Search

A stable low-temperature H2-production catalyst by crowding Pt on α-MoC - Nature.com

singkrata.blogspot.com
  • 1.

    Zhai, Y. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water–gas shift reactions. Science 329, 1633–1636 (2010).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Rodriguez, J. A. et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water–gas shift reaction. Science 318, 1757–1760 (2007).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Ladebeck, J. R. & Wagner, J. P. in Handbook of Fuel Cells (eds Vielstich, W., Lamm, A. & Gasteiger, H. A.) Ch. 16, 197 (Wiley, 2003).

  • 4.

    Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water–gas shift reaction. Science 357, 389–393 (2017).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Yang, M. et al. A common single-site Pt(ii)–O(OH)x– species stabilized by sodium on “active” and “inert” supports catalyzes the water–gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    CAS  Article  Google Scholar 

  • 6.

    Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301, 935–938 (2003).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Yang, M. et al. Catalytically active Au–O(OH)x– species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Zugic, B. et al. Probing the low-temperature water–gas shift activity of alkali-promoted platinum catalysts stabilized on carbon supports. J. Am. Chem. Soc. 136, 3238–3245 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Ding, K. et al. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Schweitzer, N. M. et al. High activity carbide supported catalysts for water gas shift. J. Am. Chem. Soc. 133, 2378–2381 (2011).

    CAS  Article  Google Scholar 

  • 11.

    Li, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018).

    CAS  Article  Google Scholar 

  • 12.

    Hunt, S. T. et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352, 974–978 (2016).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Hydrogen activation and metal hydride formation trigger cluster formation from supported iridium complexes. J. Am. Chem. Soc. 134, 5022–5025 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Fierro-Gonzalez, J. C. & Gates, B. C. Mononuclear AuIII and AuI complexes bonded to zeolite NaY: catalysts for CO oxidation at 298 K. J. Phys. Chem. B 108, 16999–17002 (2004).

    CAS  Article  Google Scholar 

  • 15.

    Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012).

    CAS  Article  Google Scholar 

  • 16.

    Miller, J. T. et al. The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J. Catal. 240, 222–234 (2006).

    CAS  Article  Google Scholar 

  • 17.

    Dong, J. et al. Carbide-supported Au catalysts for water–gas shift reactions: a new territory for the strong metal–support interaction effect. J. Am. Chem. Soc. 140, 13808–13816 (2018).

    CAS  Article  Google Scholar 

  • 18.

    Sabnis, K. D. et al. Water–gas shift catalysis over transition metals supported on molybdenum carbide. J. Catal. 331, 162–171 (2015).

    CAS  Article  Google Scholar 

  • 19.

    Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Lin, J. et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Fu, Q., Deng, W., Saltsburg, H. & Flytzani-Stephanopoulos, M. Activity and stability of low-content gold-cerium oxide catalysts for the water–gas shift reaction. Appl. Catal. B 56, 57–68 (2005).

    CAS  Article  Google Scholar 

  • 22.

    Murugappan, K. et al. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 1, 960–967 (2018).

    CAS  Article  Google Scholar 

  • 23.

    Porosoff, M. D., Yang, X., Boscoboinik, J. A. & Chen, J. G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew. Chem. Int. Ed. 53, 6705–6709 (2014).

    CAS  Article  Google Scholar 

  • 24.

    Prosvirin, I. P., Bukhtiyarov, A. V., Bluhm, H. & Bukhtiyarov, V. I. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation. Appl. Surf. Sci. 363, 303–309 (2016).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Mudiyanselage, K. et al. Importance of the metal-oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 52, 5101–5105 (2013).

    CAS  Article  Google Scholar 

  • 26.

    Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Namiki, T., Yamashita, S., Tominaga, H. & Nagai, M. Dissociation of CO and H2O during water–gas shift reaction on carburized Mo/Al2O3 catalyst. Appl. Catal. A 398, 155–160 (2011).

    CAS  Article  Google Scholar 

  • 28.

    Kalamaras, C. M., Americanou, S. & Efstathiou, A. M. “Redox” vs “associative formate with –OH group regeneration” WGS reaction mechanism on Pt/CeO2: effect of platinum particle size. J. Catal. 279, 287–300 (2011).

    CAS  Article  Google Scholar 

  • 29.

    Deng, W., Carpenter, C., Yi, N. & Flytzani-Stephanopoulos, M. Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water–gas shift reactions. Top. Catal. 44, 199–208 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Yang, M., Allard, L. F. & Flytzani-Stephanopoulos, M. Atomically dispersed Au– (OH)x species bound on titania catalyze the low-temperature water–gas shift reaction. J. Am. Chem. Soc. 135, 3768–3771 (2013).

    CAS  Article  Google Scholar 

  • 31.

    de la Peña, F. et al. hyperspy/hyperspy: HyperSpy v1.5.2. https://doi.org/10.5281/zenodo.3396791 (2019).

  • 32.

    Herzing, A. A. et al. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Artiglia, L. et al. Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 8, 102–108 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Orlando, F. et al. The environmental photochemistry of oxide surfaces and the nature of frozen salt solutions: a new in situ XPS approach. Top. Catal. 59, 591–604 (2016).

    CAS  Article  Google Scholar 

  • Let's block ads! (Why?)



    "low" - Google News
    January 20, 2021 at 11:27PM
    https://ift.tt/39QRFsw

    A stable low-temperature H2-production catalyst by crowding Pt on α-MoC - Nature.com
    "low" - Google News
    https://ift.tt/2z1WHDx


    Bagikan Berita Ini

    Related Posts :

    0 Response to "A stable low-temperature H2-production catalyst by crowding Pt on α-MoC - Nature.com"

    Post a Comment

    Powered by Blogger.