Search

The Philae lander reveals low-strength primitive ice inside cometary boulders - Nature.com

singkrata.blogspot.com
  • 1.

    Biele, J. et al. The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349, aaa9816 (2015).

    Google Scholar 

  • 2.

    Spohn, T. et al. Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko. Science 349, aab0464 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Kofman, W. et al. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 349, aab0639 (2015).

    Google Scholar 

  • 4.

    Pajola, M. et al. The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nat. Astron. 1, 0092 (2017).

    Google Scholar 

  • 5.

    Fornasier, S. et al. Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astron. Astrophys. 630, A13 (2019).

    Google Scholar 

  • 6.

    Oklay, N. et al. Long-term survival of surface water ice on comet 67P. Mon. Not. R. Astron. Soc. 469, S582–S597 (2017).

    CAS  Google Scholar 

  • 7.

    Oklay, N. et al. Comparative study of water ice exposures on cometary nuclei using multispectral imaging data. Mon. Not. R. Astron. Soc. 462, S394–S414 (2016).

    Google Scholar 

  • 8.

    Luccheti, A. et al. Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astron. Astrophys. 585, L1 (2016).

    ADS  Google Scholar 

  • 9.

    Keller, H. U. et al. Seasonal mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 469 (Issue Suppl. 2), S357–S371 (2017).

    CAS  Google Scholar 

  • 10.

    Glassmeier, K. et al. The Rosetta mission: flying towards the origin of the Solar System. Space Sci. Rev. 128, 1–21 (2007).

    ADS  Google Scholar 

  • 11.

    Heinisch, P. et al. Compressive strength of comet 67P/Churyumov–Gerasimenko derived from Philae surface contacts. Astron. Astrophys. 630, A2 (2019).

    Google Scholar 

  • 12.

    Heinisch, P. et al. Reconstruction of the flight and attitude of Rosetta’s lander Philae. Acta Astronaut. 140, 509–516 (2017).

    ADS  Google Scholar 

  • 13.

    Auster, H. U. et al. ROMAP: Rosetta magnetometer and plasma monitor. Space Sci. Rev. 128, 221–240 (2007).

    ADS  Google Scholar 

  • 14.

    Keller, H. U. et al. OSIRIS — the scientific camera system onboard Rosetta. Space Sci. Rev. 128, 433–506 (2007).

    ADS  Google Scholar 

  • 15.

    Glassmeier, K. et al. RPC-MAG, the fluxgate magnetometer in the ROSETTA plasma consortium. Space Sci. Rev. 128, 649–670 (2007).

    ADS  Google Scholar 

  • 16.

    Auster, H. U. et al. The non-magnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science 349, aaa5102 (2015).

    Google Scholar 

  • 17.

    Fornasier, S. et al. Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science 354, 1566–1570 (2016).

    ADS  CAS  Google Scholar 

  • 18.

    Fulle, M. et al. The dust-to-ices ratio in comets and Kuiper belt objects. Mon. Not. R. Astron. Soc. 469, S45–S49 (2017).

    CAS  Google Scholar 

  • 19.

    Choukroun, M. et al. Dust-to-gas and refractory-to-ice mass ratios of comet 67P/Churyumov-Gerasimenko from Rosetta observations. Space Sci. Rev. 216, 44 (2020).

    ADS  CAS  Google Scholar 

  • 20.

    Deshapriya, J. D. P. Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astron. Astrophys. 613, A36 (2018).

    Google Scholar 

  • 21.

    Filacchione, G. et al. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Nature 529, 368–372 (2016).

    ADS  CAS  Google Scholar 

  • 22.

    Sunshine, J. M. et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006).

    ADS  CAS  Google Scholar 

  • 23.

    Groussin, O. et al. Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astron. Astrophys. 583, A32 (2015).

    Google Scholar 

  • 24.

    Herique, A. et al. Homogeneity of 67P/Churyumov-Gerasimenko as seen by CONSERT: implication on composition and formation. Astron. Astrophys. 630, A6 (2019).

    CAS  Google Scholar 

  • 25.

    Pätzold, M. et al. A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field. Nature 530, 63–65 (2016).

    ADS  Google Scholar 

  • 26.

    Fulle, M. et al. Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. Mon. Not. R. Astron. Soc. 462, S132–S137 (2016).

    Google Scholar 

  • 27.

    Blum, J. et al. The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the Solar System. Astrophys. J. 652, 1768–1781 (2006).

    ADS  CAS  Google Scholar 

  • 28.

    Mannel, T. et al. Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometre scale. Astron. Astrophys. 630, A26 (2019).

    CAS  Google Scholar 

  • 29.

    Güttler, C. et al. Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 630, A24 (2019).

    Google Scholar 

  • 30.

    Lorek, S., Gundlach, B., Lacerda, P. & Blum, J. Comet formation in collapsing pebble clouds — what cometary bulk density implies for the cloud mass and dust-to-ice ratio. Astron. Astrophys. 587, A128 (2016).

    ADS  Google Scholar 

  • 31.

    Fulle, M. et al. How comets work: nucleus erosion versus dehydration. Mon. Not. R. Astron. Soc. 493, 4039–4044 (2020).

    ADS  Google Scholar 

  • 32.

    Gundlach, B., Fulle, M. & Blum, J. On the activity of comets: understanding the gas and dust emission from comet 67P/Churyumov-Gerasimenko’s south-pole region during perihelion. Mon. Not. R. Astron. Soc. 493, 3690–3715 (2020).

    ADS  Google Scholar 

  • 33.

    Bockelée-Morvan, D. et al. AMBITION–Comet Nucleus Cryogenic Sample Return. https://www.cosmos.esa.int/web/voyage-2050/white-papers (ESA, 2019).

  • 34.

    Veverka, J. Cryogenic Comet Nucleus Sample Return (CNSR) Mission Technology Study. Report SDO-12367 https://solarsystem.nasa.gov/studies/228/cryogenic-comet-nucleus-sample-return-cnsr-mission-technology-study (NASA, 2017).

  • 35.

    Jorda, L. et al. The global shape, density and rotation of 67P/Churyumov-Gerasimenko from pre-perihelion Rosetta/OSIRIS observations. Icarus 277, 257–278 (2016).

    ADS  Google Scholar 

  • 36.

    Hapke, B. et al. Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534 (2002).

    ADS  Google Scholar 

  • 37.

    Fornasier, S. et al. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astron. Astrophys. 583, A30 (2015).

    CAS  Google Scholar 

  • 38.

    Warren, S. G. & Brandt, R. E. Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res. 113, D14220 (2008).

    ADS  Google Scholar 

  • 39.

    Capaccioni, F. et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Filacchione, G. et al. The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (1) Prelanding mission phase. Icarus 274, 334–349 (2016).

    ADS  CAS  Google Scholar 

  • 41.

    Coradini, A. et al. VIRTIS: an imaging spectrometer for the Rosetta mission. Space Sci. Rev. 128, 529–559 (2007).

    ADS  Google Scholar 

  • 42.

    Filacchione, G. On-ground characterization of Rosetta/VIRTIS-M. II. Spatial and radiometric calibrations. Rev. Sci. Instrum. 77, 103106 (2006).

    ADS  Google Scholar 

  • 43.

    Ammannito, E. et al. On-ground characterization of Rosetta/VIRTIS-M. I. Spectral and geometrical calibrations. Rev. Sci. Instrum. 77, 093109 (2006).

    ADS  Google Scholar 

  • 44.

    Raponi, A. et al. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis. Mon. Not. R. Astron. Soc. 462 (Issue Suppl. 1), S476–S490 (2016).

    Google Scholar 

  • 45.

    Blum, J. et al. Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Mon. Not. R. Astron. Soc. 469, S755–S773 (2017).

    CAS  Google Scholar 

  • 46.

    Skorov, Y. V. & Blum, J. Dust release and tensile strength of the non-volatile layer of cometary nuclei. Icarus 221, 1–11 (2012).

    ADS  CAS  Google Scholar 

  • 47.

    Davidsson, B. J. R. et al. The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 592, A63 (2016).

    Google Scholar 

  • 48.

    Güttler, C. et al. The physics of protoplanetesimal dust agglomerates. IV. Toward a dynamical collision model. Astrophys. J. 701, 130–141 (2009).

    ADS  Google Scholar 

  • 49.

    Schräpler, R. et al. The stratification of regolith on celestial objects. Icarus 257, 33–46 (2015).

    ADS  Google Scholar 

  • 50.

    Oquendo-Patiño, W. F. & Estrada-Mejia, N. Optimal packing of poly-disperse spheres in 3D: effect of the grain size span and shape. In Proc. VI International Conference on Particle-based Methods—Fundamentals and Applications (eds Oñate, E. et al.) 313–319 (CIMNE, 2019).

  • 51.

    Onoda, G. Y. & Liniger, E. G. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990).

    ADS  CAS  Google Scholar 

  • 52.

    Luding, S. Granular matter: so much for the jamming point. Nat. Phys. 12, 531–532 (2016).

    CAS  Google Scholar 

  • Let's block ads! (Why?)



    "low" - Google News
    October 28, 2020 at 11:48PM
    https://ift.tt/2Tz7Fra

    The Philae lander reveals low-strength primitive ice inside cometary boulders - Nature.com
    "low" - Google News
    https://ift.tt/2z1WHDx


    Bagikan Berita Ini

    0 Response to "The Philae lander reveals low-strength primitive ice inside cometary boulders - Nature.com"

    Post a Comment

    Powered by Blogger.