Biele, J. et al. The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349, aaa9816 (2015).
Spohn, T. et al. Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko. Science 349, aab0464 (2015).
Kofman, W. et al. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 349, aab0639 (2015).
Pajola, M. et al. The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nat. Astron. 1, 0092 (2017).
Fornasier, S. et al. Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astron. Astrophys. 630, A13 (2019).
Oklay, N. et al. Long-term survival of surface water ice on comet 67P. Mon. Not. R. Astron. Soc. 469, S582–S597 (2017).
Oklay, N. et al. Comparative study of water ice exposures on cometary nuclei using multispectral imaging data. Mon. Not. R. Astron. Soc. 462, S394–S414 (2016).
Luccheti, A. et al. Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astron. Astrophys. 585, L1 (2016).
Keller, H. U. et al. Seasonal mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 469 (Issue Suppl. 2), S357–S371 (2017).
Glassmeier, K. et al. The Rosetta mission: flying towards the origin of the Solar System. Space Sci. Rev. 128, 1–21 (2007).
Heinisch, P. et al. Compressive strength of comet 67P/Churyumov–Gerasimenko derived from Philae surface contacts. Astron. Astrophys. 630, A2 (2019).
Heinisch, P. et al. Reconstruction of the flight and attitude of Rosetta’s lander Philae. Acta Astronaut. 140, 509–516 (2017).
Auster, H. U. et al. ROMAP: Rosetta magnetometer and plasma monitor. Space Sci. Rev. 128, 221–240 (2007).
Keller, H. U. et al. OSIRIS — the scientific camera system onboard Rosetta. Space Sci. Rev. 128, 433–506 (2007).
Glassmeier, K. et al. RPC-MAG, the fluxgate magnetometer in the ROSETTA plasma consortium. Space Sci. Rev. 128, 649–670 (2007).
Auster, H. U. et al. The non-magnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science 349, aaa5102 (2015).
Fornasier, S. et al. Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science 354, 1566–1570 (2016).
Fulle, M. et al. The dust-to-ices ratio in comets and Kuiper belt objects. Mon. Not. R. Astron. Soc. 469, S45–S49 (2017).
Choukroun, M. et al. Dust-to-gas and refractory-to-ice mass ratios of comet 67P/Churyumov-Gerasimenko from Rosetta observations. Space Sci. Rev. 216, 44 (2020).
Deshapriya, J. D. P. Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astron. Astrophys. 613, A36 (2018).
Filacchione, G. et al. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Nature 529, 368–372 (2016).
Sunshine, J. M. et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006).
Groussin, O. et al. Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astron. Astrophys. 583, A32 (2015).
Herique, A. et al. Homogeneity of 67P/Churyumov-Gerasimenko as seen by CONSERT: implication on composition and formation. Astron. Astrophys. 630, A6 (2019).
Pätzold, M. et al. A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field. Nature 530, 63–65 (2016).
Fulle, M. et al. Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. Mon. Not. R. Astron. Soc. 462, S132–S137 (2016).
Blum, J. et al. The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the Solar System. Astrophys. J. 652, 1768–1781 (2006).
Mannel, T. et al. Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometre scale. Astron. Astrophys. 630, A26 (2019).
Güttler, C. et al. Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 630, A24 (2019).
Lorek, S., Gundlach, B., Lacerda, P. & Blum, J. Comet formation in collapsing pebble clouds — what cometary bulk density implies for the cloud mass and dust-to-ice ratio. Astron. Astrophys. 587, A128 (2016).
Fulle, M. et al. How comets work: nucleus erosion versus dehydration. Mon. Not. R. Astron. Soc. 493, 4039–4044 (2020).
Gundlach, B., Fulle, M. & Blum, J. On the activity of comets: understanding the gas and dust emission from comet 67P/Churyumov-Gerasimenko’s south-pole region during perihelion. Mon. Not. R. Astron. Soc. 493, 3690–3715 (2020).
Bockelée-Morvan, D. et al. AMBITION–Comet Nucleus Cryogenic Sample Return. https://www.cosmos.esa.int/web/voyage-2050/white-papers (ESA, 2019).
Veverka, J. Cryogenic Comet Nucleus Sample Return (CNSR) Mission Technology Study. Report SDO-12367 https://solarsystem.nasa.gov/studies/228/cryogenic-comet-nucleus-sample-return-cnsr-mission-technology-study (NASA, 2017).
Jorda, L. et al. The global shape, density and rotation of 67P/Churyumov-Gerasimenko from pre-perihelion Rosetta/OSIRIS observations. Icarus 277, 257–278 (2016).
Hapke, B. et al. Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534 (2002).
Fornasier, S. et al. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astron. Astrophys. 583, A30 (2015).
Warren, S. G. & Brandt, R. E. Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res. 113, D14220 (2008).
Capaccioni, F. et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015).
Filacchione, G. et al. The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (1) Prelanding mission phase. Icarus 274, 334–349 (2016).
Coradini, A. et al. VIRTIS: an imaging spectrometer for the Rosetta mission. Space Sci. Rev. 128, 529–559 (2007).
Filacchione, G. On-ground characterization of Rosetta/VIRTIS-M. II. Spatial and radiometric calibrations. Rev. Sci. Instrum. 77, 103106 (2006).
Ammannito, E. et al. On-ground characterization of Rosetta/VIRTIS-M. I. Spectral and geometrical calibrations. Rev. Sci. Instrum. 77, 093109 (2006).
Raponi, A. et al. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis. Mon. Not. R. Astron. Soc. 462 (Issue Suppl. 1), S476–S490 (2016).
Blum, J. et al. Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Mon. Not. R. Astron. Soc. 469, S755–S773 (2017).
Skorov, Y. V. & Blum, J. Dust release and tensile strength of the non-volatile layer of cometary nuclei. Icarus 221, 1–11 (2012).
Davidsson, B. J. R. et al. The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 592, A63 (2016).
Güttler, C. et al. The physics of protoplanetesimal dust agglomerates. IV. Toward a dynamical collision model. Astrophys. J. 701, 130–141 (2009).
Schräpler, R. et al. The stratification of regolith on celestial objects. Icarus 257, 33–46 (2015).
Oquendo-Patiño, W. F. & Estrada-Mejia, N. Optimal packing of poly-disperse spheres in 3D: effect of the grain size span and shape. In Proc. VI International Conference on Particle-based Methods—Fundamentals and Applications (eds Oñate, E. et al.) 313–319 (CIMNE, 2019).
Onoda, G. Y. & Liniger, E. G. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990).
Luding, S. Granular matter: so much for the jamming point. Nat. Phys. 12, 531–532 (2016).
"low" - Google News
October 28, 2020 at 11:48PM
https://ift.tt/2Tz7Fra
The Philae lander reveals low-strength primitive ice inside cometary boulders - Nature.com
"low" - Google News
https://ift.tt/2z1WHDx
Bagikan Berita Ini
0 Response to "The Philae lander reveals low-strength primitive ice inside cometary boulders - Nature.com"
Post a Comment