Search

Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments - Nature.com

singkrata.blogspot.com
  • 1.

    Majorana, E. Theory of the symmetry of electrons and positrons. Nuovo Cim. 14, 171–184 (1937).

    ADS  CAS  Google Scholar 

  • 2.

    Gómez Cadenas, J. J., Martín-Albo, J., Mezzetto, M., Monrabal, F. & Sorel, M. The search for neutrinoless double beta decay. Riv. Nuovo Cim. 35, 29–98 (2012).

    ADS  Google Scholar 

  • 3.

    Moe, M. K. New approach to the detection of neutrinoless double beta decay. Phys. Rev. C 44, 931–934 (1991).

    ADS  Google Scholar 

  • 4.

    Danilov, M. et al. Detection of very small neutrino masses in double beta decay using laser tagging. Phys. Lett. B 480, 12–18 (2000).

    ADS  CAS  Google Scholar 

  • 5.

    nEXO Collaboration. Imaging individual barium atoms in solid xenon for barium tagging in nEXO. Nature 569, 203–207 (2019).

    ADS  CAS  Google Scholar 

  • 6.

    Nygren, D. R. Detecting the barium daughter in136Xe 0-νββ decay using single-molecule fluorescence imaging techniques. J. Phys. Conf. Ser. 650, 012002 (2015).

    Google Scholar 

  • 7.

    Jones, B. J. P., McDonald, A. D. & Nygren, D. R. Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. J. Inst. 11, P12011 (2016).

    ADS  Google Scholar 

  • 8.

    McDonald, A. D. et al. Demonstration of single barium ion sensitivity for neutrinoless double beta decay using single molecule fluorescence imaging. Phys. Rev. Lett. 120, 132504 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pis’ma Z. Eksp. Teor. Fiz. 5, 32–35 (1967).

    CAS  Google Scholar 

  • 10.

    Fukugita, M. & Yanagida, T. Baryogenesis without grand unification. Phys. Lett. B 174, 45–47 (1986).

    ADS  CAS  Google Scholar 

  • 11.

    Gell-Mann, M., Ramond, P. & Slansky, R. Complex spinors and unified theories. In Proc. of Supergravity Stony Brook Workshop (eds Van Nieuwenhuizen, P. & Freedman D. Z.) 27–29 (1979).

  • 12.

    Yanagida, T. Horizontal symmetry and masses of neutrinos. Prog. Theor. Phys. 64, 1103–1105 (1980).

    ADS  CAS  Google Scholar 

  • 13.

    Mohapatra, R. N. & Senjanovic, G. Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 44, 912–915 (1980).

    ADS  CAS  MATH  Google Scholar 

  • 14.

    Gando, A. et al. Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 117, 082503–082506 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    GERDA Collaboration. Improved limit on neutrinoless double-β decay of 76Ge from GERDA Phase II. Phys. Rev. Lett. 120, 132503–132505 (2018).

    ADS  Google Scholar 

  • 16.

    Alduino, C. et al. First results from CUORE: a search for lepton number violation via 0νββ decay of 130Te. Phys. Rev. Lett. 120, 132501–132508 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Gomez-Cadenas, J. J. Status and prospects of the NEXT experiment for neutrinoless double beta decay searches. Preprint at https://arxiv.org/abs/1906.01743 (2019).

  • 18.

    Elliott, S. R. & Vogel, P. Double beta decay. Annu. Rev. Nucl. Part. Sci. 52, 115–151 (2002).

    ADS  CAS  Google Scholar 

  • 19.

    Sinclair, D. et al. Prospects for barium tagging in gaseous xenon. J. Phys. Conf. Ser. 309, 012005 (2011).

    Google Scholar 

  • 20.

    Mong, B. et al. Spectroscopy of Ba and Ba+ deposits in solid xenon for barium tagging in nEXO. Phys. Rev. A 91, 022505–022513 (2015).

    ADS  Google Scholar 

  • 21.

    EXO-200 Collaboration. Measurements of the ion fraction and mobility of α- and β-decay products in liquid xenon using the EXO-200 detector. Phys. Rev. C 92, 045504–045510 (2015).

    ADS  Google Scholar 

  • 22.

    Bolotnikov, A. & Ramsey, B. The spectroscopic properties of high-pressure xenon. Nucl. Instrum. Methods Phys. Res. A 396, 360–370 (1997).

    ADS  CAS  Google Scholar 

  • 23.

    Nygren, D. High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nucl. Instrum. Methods Phys. Res. A 603, 337–348 (2009).

    ADS  CAS  Google Scholar 

  • 24.

    Álvarez, V. et al. NEXT-100 Technical Design Report (TDR). Executive summary. J. Inst. 7, T06001 (2012).

    ADS  Google Scholar 

  • 25.

    Martín-Albo, J. et al. Sensitivity of NEXT-100 to neutrinoless double beta decay. J. High Energy Phys. 2016, 159 (2016).

    Google Scholar 

  • 26.

    Thapa, P. et al. Barium chemosensors with dry-phase fluorescence for neutrinoless double beta decay. Sci. Rep. 9, 15097 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Ji, H.-F., Dabestani, R., Brown, G. M. & Hettich, R. Spacer length effect on the photoinduced electron transfer fluorescent probe for alkali metal ions. Photochem. Photobiol. 69, 513–516 (1999).

    CAS  Google Scholar 

  • 28.

    Nakahara, Y., Kida, T., Nakatsuji, Y. & Akashi, M. Fluorometric sensing of alkali metal and alkaline earth metal cations by novel photosensitive monoazacryptand derivatives in aqueous micellar solutions. Org. Biomol. Chem. 3, 1787–1794 (2005).

    CAS  PubMed  Google Scholar 

  • 29.

    Bissell, R. A. et al. Luminescence and charge transfer. Part 2. Aminomethyl anthracene derivatives as fluorescent pet (photoinduced electron transfer) sensors for protons. J. Chem. Soc. Perkin Trans. 2 9, 1559–1564 (1992).

    Google Scholar 

  • 30.

    Bourson, J., Pouget, J. & Valeur, B. Ion-responsive fluorescent compounds 4 effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers. J. Phys. Chem. 97, 4552–4557 (1993).

    CAS  Google Scholar 

  • 31.

    Li, J., Yim, D., Jang, W.-D. & Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 46, 2437–2458 (2017).

    CAS  PubMed  Google Scholar 

  • 32.

    Valeur, B. & Berberan-Santos, M. N. in Molecular Fluorescence – Principles and Applications 420–436 (Wiley–VCH, 2012).

  • 33.

    Huston, M. E., Haider, K. W. & Czarnik, A. W. Chelation enhanced fluorescence in 9,10- bis[[(2-(dimethylamino)ethyl)methylamino]methyl]anthracene. J. Am. Chem. Soc. 110, 4460–4462 (1988).

    CAS  Google Scholar 

  • 34.

    Carter, K. P., Young, A. M. & Palmer, A. E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 114, 4564–4601 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Golchini, K. et al. Synthesis and characterization of a new fluorescent probe for measuring potassium. Am. J. Physiol. 258, F438–F443 (1990).

    CAS  PubMed  Google Scholar 

  • 36.

    Yang, J.-S., Hwang, C.-Y., Hsieh, C.-C. & Chiou, S.-Y. Spectroscopic correlations between supermolecules and molecules. Anatomy of the ion-modulated electronic properties of the nitrogen donor in monoazacrown-derived intrinsic fluoroionophores. J. Org. Chem. 69, 719–726 (2004).

    CAS  PubMed  Google Scholar 

  • 37.

    Smith, G. A., Hesketh, J. C. & Metcalfe, T. R. Design and properties of a fluorescent indicator of intracellular free sodium concentration. Biochem. J. 250, 227–232 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Crossley, R., Goolamali, Z. & Sammes, P. G. Synthesis and properties of a potential extracellular fluorescent probe for potassium. J. Chem. Soc. Perkin Trans. 2 7, 1615–1623 (1994).

    Google Scholar 

  • 39.

    Aginagalde, M. et al. Tandem [8 + 2] cycloaddition-[2 + 6 + 2] dehydrogenation reactions involving imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines. J. Org. Chem. 75, 2776–2784 (2010).

    CAS  PubMed  Google Scholar 

  • 40.

    Zhang, Y., Tang, S., Thapaliya, E. R., Sansalone, L. & Raymo, F. M. Fluorescence activation with switchable oxazines. Chem. Commun. 54, 8799–8809 (2018).

    CAS  Google Scholar 

  • 41.

    Ko, C.-C. & Yam, V. W.-W. Coordination compounds with photochromic ligands: ready tunability and visible light-sensitized photochromism. Acc. Chem. Res. 51, 149–159 (2018).

    CAS  PubMed  Google Scholar 

  • 42.

    Maitra, R., Chen, J.-H., Hu, C.-H. & Lee, H. M. Synthesis and optical properties of push-push- pull chromophores based on imidazo[5,1,2-cd]indolizines and naphtho[1′,2′:4,5]imidazo[1,2-a]pyridines. Eur. J. Org. Chem. 5975–5985 (2017).

  • 43.

    Dougherty, D. A. The cation–π interaction. Acc. Chem. Res. 46, 885–893 (2013).

    CAS  PubMed  Google Scholar 

  • 44.

    Ávila, F. J., Gambín, A., Artal, P. & Bueno, J. M. In vivo two-photon microscopy of the human eye. Sci. Rep. 9, 10121 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Bueno, J. et al. Multiphoton microscopy of ex vivo corneas after collagen cross-linking. Invest. Ophthalmol. Vis. Sci. 52, 5325–5331 (2011).

    CAS  PubMed  Google Scholar 

  • 46.

    Bainglass, E., Jones, B. J. P., Foss, F. W., Huda, M. N. & Nygren, D. R. Mobility and clustering of barium ions and dications in high pressure xenon gas. Phys. Rev. A 97, 062509 (2018).

    ADS  CAS  Google Scholar 

  • 47.

    Benesi, H. A. & Hildebrand, J. H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949).

    CAS  Google Scholar 

  • 48.

    Zhang, Q. & Duan, K. Fluorescence chemosensor containing 4-methyl-7-coumarinyloxy, acetylhydrazono and n-phenylaza-15-crown-5 moieties for K+ and Ba2+ ions. Heterocycl. Commun. 24, 141–145 (2018).

    ADS  CAS  Google Scholar 

  • 49.

    Batsanov, S. S. Van der Waals radii of elements. Inorg. Mater. 37, 871–885 (2001).

    CAS  Google Scholar 

  • 50.

    Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).

    ADS  CAS  Google Scholar 

  • 51.

    Zinter, J. P. & Levene, M. J. Maximizing fluorescence collection efficiency in multiphoton microscopy. Opt. Express 19, 15348–15362 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Byrnes, N. K. et al. Barium tagging with selective, dry-functional, single molecule sensitive on-off fluorophores for the NEXT experiment. In Meeting of the Division of Particles and Fields of the American Physical Society https://www.slac.stanford.edu/econf/C1907293/ (2019).

  • 54.

    Amor, R. et al. Widefield two-photon excitation without scanning: Live cell microscopy with high time resolution and low photo-bleaching. PLoS One 11, e0147115 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Let's block ads! (Why?)



    "low" - Google News
    June 22, 2020 at 10:01PM
    https://ift.tt/2YYIFvR

    Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments - Nature.com
    "low" - Google News
    https://ift.tt/2z1WHDx


    Bagikan Berita Ini

    0 Response to "Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments - Nature.com"

    Post a Comment

    Powered by Blogger.